Простейшие и сложные тригонометрические неравенства

Неравенства – это соотношения вида a › b, где a и b – есть выражения, содержащие как минимум одну переменную. Неравенства могут быть строгими — ‹, › и нестрогими — ≥, ≤.

Тригонометрические неравенства представляют собой выражения вида: F(x) › a, F(x) ‹ a, F(x) ≤ a, F(x) ≥ a, в которых F(x) представлено одной или несколькими тригонометрическими функциями.

Содержание

Простейшие тригонометрические неравенства

Примером простейшего тригонометрического неравенства является: sin x ‹  1/2. Решать подобные задачи принято графически, для этого разработаны два способа.

Способ 1 — Решение неравенств с помощью построения графика функции

Чтобы найти промежуток, удовлетворяющий условиям неравенство sin x ‹ 1/2, необходимо выполнить следующие действия:

  1. На координатной оси построить синусоиду y = sin x.
  2. На той же оси начертить график числового аргумента неравенства, т. е. прямую, проходящую через точку ½ ординаты ОY.
  3. Отметить точки пересечения двух графиков.
  4. Заштриховать отрезок являющийся, решением примера.

задача 1 тригонометрические неравеснства

Когда в выражении присутствуют строгие знаки, точки пересечения не являются решениями. Так как наименьший положительный период синусоиды равен 2π, то запишем ответ следующим образом:

Снимок экрана 2017-12-01 в 23.57.50

Если знаки выражения нестрогие, то интервал решений необходимо заключить в квадратные скобки — [ ]. Ответ задачи можно также записать в виде очередного неравенства: Снимок экрана 2017-12-02 в 0.02.52

Способ 2 — Решение тригонометрических неравенств с помощью единичной окружности

Подобные задачи легко решаются и с помощью тригонометрического круга. Алгоритм поиска ответов очень прост:

  1. Сначала стоит начертить единичную окружность.
  2. Затем нужно отметить значение аркфункции аргумента правой части неравенства на дуге круга.
  3. Нужно провести прямую проходящую через значение аркфункции параллельно оси абсциссы (ОХ).
  4. После останется только выделить дугу окружности, являющуюся множеством решений тригонометрического неравенства.
  5. Записать ответ в требуемой форме.

Разберем этапы решения на примере неравенства sin x › 1/2.  На круге отмечены точки α и β – значения

Снимок экрана 2017-12-02 в 0.10.48

Точки дуги, расположенные выше α и β, являются интервалом решения заданного неравенства.

Задача 2 тригонометрические неравестнва

Если нужно решить пример для cos, то дуга ответов будет располагаться симметрично оси OX, а не OY. Рассмотреть разницу между интервалами решений для sin и cos можно на схемах приведенных ниже по тексту.

примеры решений различных тригонометрических неравенств1

Графические решения для неравенств тангенса и котангенса будут отличаться и от синуса, и от косинуса. Это обусловлено свойствами функций.

Trigonometric_function

Арктангенс и арккотангенс представляют собой касательные к тригонометрической окружности, а минимальный положительный период для обеих функций равняется π. Чтобы быстро и правильно пользоваться вторым способом, нужно запомнить на какой из оси откладываются значения sin, cos, tg и ctg.

Касательная тангенс проходит параллельно оси OY. Если отложить значение arctg a на единичном круге, то вторая требуемая точка будет расположено в диагональной четверти.  Углы

Снимок экрана 2017-12-02 в 0.15.24 являются точками разрыва для функции, так как график стремится к ним, но никогда не достигает.

поиск ршения неравенства тангенса

В случае с котангенсом касательная проходит параллельно оси OX, а функция прерывается в точках π и 2π.

поиск решения неравенства котангенса

Сложные тригонометрические неравенства

Если аргумент функции неравенства представлен не просто переменной, а целым выражением содержащим неизвестную, то речь уже идет о сложном неравенстве. Ход и порядок его решения несколько отличаются от способов описанных выше. Допустим необходимо найти решение следующего неравенства:

пример сложного неравенства

Графическое решение предусматривает построение обычной синусоиды y = sin x по произвольно выбранным значениям x. Рассчитаем таблицу с координатами для опорных точек графика:

таблица значений координат

В результате должна получиться красивая кривая.

Для простоты поиска решения заменим сложный аргумент функции

Снимок экрана 2017-12-02 в 15.04.43

синусоида по клеточкам в тетради

Снимок экрана 2017-12-02 в 15.12.38

Пересечение двух графиков позволяет определить область искомых значений, при которых выполняется условие неравенства.

график решения

Найденный отрезок является решением для переменной t:

Поиск решения 1

Однако, цель задания найти все возможные варианты неизвестной x:

Поиск решения 2

Решить двойное неравенство достаточно просто, нужно перенести π/3 в крайние части уравнения и произвести требуемые вычисления:

Поиск решения 3

Ответ на задание будет выглядеть как интервал для строгого неравенства:

Ответ

Загрузка...

Подобные задачи потребует опыта и сноровки учащихся в обращении с тригонометрическими функциями. Чем больше тренировочных заданий будет решено в процессе подготовке, тем проще и быстрее школьник найдет ответ на вопрос ЕГЭ теста.

Загрузка...

Похожие статьи